Zn2+-Aβ40 complexes form metastable quasi-spherical oligomers that are cytotoxic to cultured hippocampal neurons.

نویسندگان

  • Inna Solomonov
  • Eduard Korkotian
  • Benjamin Born
  • Yishay Feldman
  • Arkady Bitler
  • Farid Rahimi
  • Huiyuan Li
  • Gal Bitan
  • Irit Sagi
چکیده

The roles of metal ions in promoting amyloid β-protein (Aβ) oligomerization associated with Alzheimer disease are increasingly recognized. However, the detailed structures dictating toxicity remain elusive for Aβ oligomers stabilized by metal ions. Here, we show that small Zn(2+)-bound Aβ1-40 (Zn(2+)-Aβ40) oligomers formed in cell culture medium exhibit quasi-spherical structures similar to native amylospheroids isolated recently from Alzheimer disease patients. These quasi-spherical Zn(2+)-Aβ40 oligomers irreversibly inhibit spontaneous neuronal activity and cause massive cell death in primary hippocampal neurons. Spectroscopic and x-ray diffraction structural analyses indicate that despite their non-fibrillar morphology, the metastable Zn(2+)-Aβ40 oligomers are rich in β-sheet and cross-β structures. Thus, Zn(2+) promotes Aβ40 neurotoxicity by structural organization mechanisms mediated by coordination chemistry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Interactions between Alzheimer’s Aβ40 and Aβ42 on the Surface of Primary Neurons Revealed by Single Molecule Microscopy

Two amyloid-β peptides (Aβ40 and Aβ42) feature prominently in the extracellular brain deposits associated with Alzheimer's disease. While Aβ40 is the prevalent form in the cerebrospinal fluid, the fraction of Aβ42 increases in the amyloid deposits over the course of disease development. The low in vivo concentration (pM-nM) and metastable nature of Aβ oligomers have made identification of their...

متن کامل

Single-molecule imaging reveals aβ42:aβ40 ratio-dependent oligomer growth on neuronal processes.

Soluble oligomers of the amyloid-β peptide have been implicated as proximal neurotoxins in Alzheimer's disease. However, the identity of the neurotoxic aggregate(s) and the mechanisms by which these species induce neuronal dysfunction remain uncertain. Physiologically relevant experimentation is hindered by the low endogenous concentrations of the peptide, the metastability of Aβ oligomers, and...

متن کامل

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

Amyloid β-peptides 1–40 and 1–42 form oligomers with mixed β-sheets† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01743j

Two main amyloid-β peptides of different length (Aβ40 and Aβ42) are involved in Alzheimer's disease. Their relative abundance is decisive for the severity of the disease and mixed oligomers may contribute to the toxic species. However, little is know about the extent of mixing. To study whether Aβ40 and Aβ42 co-aggregate, we used Fourier transform infrared spectroscopy in combination with 13C-l...

متن کامل

Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons

Small soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer's disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 24  شماره 

صفحات  -

تاریخ انتشار 2012